102 research outputs found

    Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade

    Get PDF
    International audienceOne of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The associated long memory resides in their occurrence rate, and is not inherent to the background fluctuations. Interestingly, the spectral properties of inertial range turbulence differ inside and outside of switchback structures; in the latter the 1/f range extends to higher frequencies. These results suggest that outside of these structures we are in the presence of lower-amplitude fluctuations with a shorter turbulent inertial range. We conjecture that these correspond to a pristine solar wind

    Concussion and long-term cognitive function among rugby players-The BRAIN Study

    Get PDF
    OBJECTIVE: The BRAIN Study was established to assess the associations between self-reported concussions and cognitive function among retired rugby players. METHODS: Former elite-level male rugby union players (50+ years) in England were recruited. Exposure to rugby-related concussion was collected using the BRAIN-Q tool. The primary outcome measure was the Preclinical Alzheimer Cognitive Composite (PACC). Linear regressions were conducted for the association between concussion and PACC score, adjusting for confounders. RESULTS: A total of 146 participants were recruited. The mean (standard deviation) length of playing career was 15.8 (5.4) years. A total of 79.5% reported rugby-related concussion(s). No association was found between concussion and PACC (ÎČ -0.03 [95% confidence interval (CI): -1.31, 0.26]). However, participants aged 80+ years reporting 3+ concussions had worse cognitive function than those without concussion (ÎČ -1.04 [95% CI: -1.62, -0.47]). CONCLUSIONS: Overall there was no association between concussion and cognitive function; however, a significant interaction with age revealed an association in older participants

    Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions

    Get PDF
    The solar wind escapes from the solar corona and is accelerated, over a short distance, to its terminal velocity. The energy balance associated with this acceleration remains poorly understood. To quantify the global electrostatic contribution to the solar wind dynamics, we empirically estimate the ambipolar electric field (E∄) and potential (Ίr,∞). We analyze electron velocity distribution functions (VDFs) measured in the near-Sun solar wind between 20.3 RS and 85.3 RS by the Parker Solar Probe. We test the predictions of two different solar wind models. Close to the Sun, the VDFs exhibit a suprathermal electron deficit in the sunward, magnetic-field-aligned part of phase space. We argue that the sunward deficit is a remnant of the electron cutoff predicted by collisionless exospheric models. This cutoff energy is directly linked to Ίr,∞. Competing effects of E∄ and Coulomb collisions in the solar wind are addressed by the Steady Electron Runaway Model (SERM). In this model, electron phase space is separated into collisionally overdamped and underdamped regions. We assume that this boundary velocity at small pitch angles coincides with the strahl break-point energy, which allows us to calculate E∄. The obtained Ίr,∞ and E∄ agree well with theoretical expectations. They decrease with radial distance as power-law functions with indices αΊ = −0.66 and αE = −1.69. We finally estimate the velocity gained by protons from electrostatic acceleration, which equals 77% calculated from the exospheric models, and 44% from the SERM model

    The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2

    Get PDF
    International audienceMagnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of heliocentric distances, enabling a measurement of the transition from inertial to kinetic-scale turbulence under various plasma conditions. We find that the break frequency f(b) increases as the heliocentric distance r decreases in the slow solar wind following a power law of f(b) similar to r(-1.11). We also compare this to the characteristic plasma ion scales to relate the break to the possible physical mechanisms occurring at this scale. The ratio f(b)/f(c) (f(c) for Doppler-shifted ion cyclotron resonance scale) is close to unity and almost independent of plasma beta(p). While f(b)/f(p) (f(p) for Doppler-shifted proton thermal gyroradius) increases with beta(p) approaching to unity at larger beta(p), f(b)/f(d) (f(d) for Doppler-shifted proton inertial length) decreases with beta(p) from unity at small beta(p). Due to the large comparable Alfven and solar wind speeds, we analyze these results using both the standard and modified Taylor hypotheses, demonstrating the robust statistical results

    Cross Helicity Reversals in Magnetic Switchbacks

    Get PDF
    International audienceWe consider 2D joint distributions of normalized residual energy, sigma(r)(s, t), and cross helicity, sigma(c)(s, t), during one day of Parker Solar Probe's (PSP's) first encounter as a function of wavelet scale s. The broad features of the distributions are similar to previous observations made by Helios in slow solar wind, namely well-correlated and fairly Alfvenic wind, except for a population with negative cross helicity that is seen at shorter wavelet scales. We show that this population is due to the presence of magnetic switchbacks, or brief periods where the magnetic field polarity reverses. Such switchbacks have been observed before, both in Helios data and in Ulysses data in the polar solar wind. Their abundance and short timescales as seen by PSP in its first encounter is a new observation, and their precise origin is still unknown. By analyzing these MHD invariants as a function of the wavelet scale, we show that magnetohydrodynamic (MHD) waves do indeed follow the local mean magnetic field through switchbacks, with a net Elsasser flux propagating inward during the field reversal and that they, therefore, must be local kinks in the magnetic field and not due to small regions of opposite polarity on the surface of the Sun. Such observations are important to keep in mind as computing cross helicity without taking into account the effect of switchbacks may result in spurious underestimation of sigma(c) as PSP gets closer to the Sun in later orbits

    The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind

    Get PDF
    International audienceStochastic heating (SH) is a nonlinear heating mechanism driven by the violation of magnetic moment invariance due to large-amplitude turbulent fluctuations producing diffusion of ions toward higher kinetic energies in the direction perpendicular to the magnetic field. It is frequently invoked as a mechanism responsible for the heating of ions in the solar wind. Here, we quantify for the first time the proton SH rate Q(perpendicular to) at radial distances from the Sun as close as 0.16 au, using measurements from the first two Parker Solar Probe encounters. Our results for both the amplitude and radial trend of the heating rate, Q(perpendicular to) proportional to r(-2.5), agree with previous results based on the Helios data set at heliocentric distances from 0.3 to 0.9 au. Also in agreement with previous results, Q(perpendicular to) is significantly larger in the fast solar wind than in the slow solar wind. We identify the tendency in fast solar wind for cuts of the core proton velocity distribution transverse to the magnetic field to exhibit a flattop shape. The observed distribution agrees with previous theoretical predictions for fast solar wind where SH is the dominant heating mechanism

    Magnetic connectivity of the ecliptic plane within 0.5 AU : PFSS modeling of the first PSP encounter

    Get PDF
    We compare magnetic field measurements taken by the FIELDS instrument on Parker Solar Probe (PSP) during its first solar encounter to predictions obtained by Potential Field Source Surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with PSPs first observations of the heliospheric magnetic field from 0.5 AU (107.5 Rs) down to 0.16 AU (35.7 Rs). Further, we show the robustness of the agreement is improved both by allowing the photospheric input to the model to vary in time, and by advecting the field from PSP down to the PFSS model domain using in situ PSP/SWEAP measurements of the solar wind speed instead of assuming it to be constant with longitude and latitude. We also explore the source surface height parameter (RSS) to the PFSS model finding that an extraordinarily low source surface height (1.3-1.5Rs) predicts observed small scale polarity inversions which are otherwise washed out with regular modeling parameters. Finally, we extract field line traces from these models. By overlaying these on EUV images we observe magnetic connectivity to various equatorial and mid-latitude coronal holes indicating plausible magnetic footpoints and offering context for future discussions of sources of the solar wind measured by PSP

    Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

    Get PDF
    International audienceWe perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around −4. Based on our measurements, we demonstrate that either a significant (>50%) fraction of the total turbulent energy flux is dissipated in this range of scales, or the characteristic nonlinear interaction time of the turbulence decreases dramatically from the expectation based solely on the dispersive nature of nonlinearly interacting kinetic AlfvĂ©n waves

    Sharp Alfvenic impulses in the near-Sun solar wind

    Get PDF
    Measurements of the near-Sun solar wind by Parker Solar Probe have revealed the presence of largenumbers of discrete Alfv ́enic impulses with an anti-Sunward sense of propagation. These are similarto those previously observed near 1 AU, in high speed streams over the Sun’s poles and at 60 solarradii. At 35 solar radii, however, they are typically shorter and sharper than seen elsewhere. Inaddition, these spikes occur in “patches” and there are also clear periods within the same stream whenthey do not occur; the timescale of these patches might be related to the rate at which the spacecraftmagnetic footpoint tracks across the coronal hole from which the plasma originated. While the velocityfluctuations associated with these spikes are typically under 100 km/s, due to the rather low Alfv ́enspeeds in the streams observed by the spacecraft to date, these are still associated with large angulardeflections of the magnetic field - and these deflections are not isotropic. These deflections do notappear to be related to the recently reported large scale, pro-rotation solar wind flow. Estimates ofthe size and shape of the spikes reveal high aspect ratio flow-aligned structures with a transverse scaleof≈104km. These events might be signatures of near-Sun impulsive reconnection events

    Ion-scale Electromagnetic Waves in the Inner Heliosphere

    Get PDF
    International audienceUnderstanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA's Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that transverse electromagnetic waves at ion resonant scales are observed in 30-50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is on the order of 20 s; however, long-duration wave events can exist without interruption on hour-long timescales. Determination of wave vectors suggests propagation parallel/antiparallel to the mean magnetic field. Though ion-scale waves are preferentially observed during intervals with a radial mean magnetic field, we show that measurement constraints, associated with single spacecraft sampling of quasi-parallel waves superposed with anisotropic turbulence, render the measured coherent ion-wave spectrum unobservable when the mean magnetic field is oblique to the solar wind flow; these results imply that the occurrence of coherent ion-scale waves is not limited to a radial field configuration. The lack of radial scaling of characteristic wave amplitudes and duration suggests that the waves are generated in situ through plasma instabilities. Additionally, observations of proton distribution functions indicate that temperature anisotropy may drive the observed ion-scale
    • 

    corecore